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Abstract-The implosion of a translating, originally spherical, free vapour bubble due to a pressure step 
is described by numerical solution of the basic equations. The treatment is based on the application of a 
combination of the mathematical methods of collocation and characteristics. The behaviour of a vapour 
bubble is a generalization of gas bubble behaviour due to the incorporation of the effect of phase transition 
at the bubble wall. Contrary to a gas bubble, a vapour bubble diminishes completely during the implosion. 
The theoretical predictions include bubble shape and fragmentation in qualitative agreement with new 

experimental results. 

1. INTRODUCTION 

DURING subcooled nucleate boiling, very high heat 
fluxes can be obtained at a superheated wall. At mod- 
erate subcoolings, vapour bubbles depart from the 
superheated wall, similar to the case of saturated boil- 
ing; however, the ascending free vapour bubbles 
implode due to the subcooling of the bulk liquid. At 
high subcoolings, bubbles grow and implode sim- 
ultaneously at the wall. 

A subcooling can be created by applying a sudden 

increase in the ambient pressure to an initially satu- 
rated liquid. Immediately after the pressure step, the 
translating free bubble implodes. The bubble shape 
will deviate from the original spherical form. In the 
present paper, the behaviour of an ascending vapour 
bubble under influence of a sudden pressure step is 
studied. 

Previously, Sluijter et al. [l] limited a theoretical 
treatment to the case of an imploding gas bubble. In 
that case, the energy equation for the liquid was not 
taken into account. Growth or implosion of a vapour 
bubble is very complicated due to the interaction of 
two mechanisms : 

(i) The behaviour of a vapour bubble, hit by a press- 
ure step, differs essentially from that of a gas 
bubble. Now, condensation or evaporation occur 
at the bubble boundary during the heat diffusion 
controlled mode of implosion or growth, respect- 
ively. The pressure inside an imploding vapour 
bubble-which is related thermodynamically to 
the vapour temperature-is limited, resulting in a 
complete final bubble implosion. 

(ii) For a gas bubble of which the implosion or 
growth is governed by liquid inertia only, the 
pressure of the gas follows from the isentropic or 
isothermal behaviour. In this case, the value of 

the pressure inside the imploding gas bubble 
approaches infinity if the volume approaches 

zero. For this reason, contrary to a vapour 
bubble, a gas bubble does not implode com- 
pletely. 

Actually, the implosion of a vapour bubble is sim- 
ultaneously diffusion and inertia controlled ; depend- 
ing on the external conditions, one of these mech- 
anisms dominates during a certain interval. 

2. MATHEMATICAL FORMULATION 

In principle, a complete set of non-linear equations 

valid for the case of an incompressible and inviscous 
liquid can be solved numerically. However, the com- 
puting time is then exceptionally long. 

For simplicity, a description is given of the behav- 
iour of an imploding free vapour bubble in an infi- 
nitely extended, incompressible and inviscous liquid. 
The compressibility of the vapour is taken into 
account. The following equations, valid for the liquid 

surrounding a bubble, are used : 

Continuity 

Momentum 

v.u = 0. (1) 

au 
- = -+p-g.x)--u.vu. at 

Energy 

aT 
z = aV2T-u.VT. (3) 

Equations (l)-(3) and the necessary auxiliary con- 
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NOMENCLATURE 

a liquid thermal diffusivity [m’ s ‘I; T liquid temperature [K] 
expansion coefficient in series for liquid T, vapour temperature [K] 
velocity in radial direction [m3+k s-l] u liquid velocity vector [m s-‘1 

a, vapour thermal diffusivity [m’s - ‘1 u, liquid velocity in r-direction [ms-‘1 
b expansion coefficient in series for liquid u-9 liquid velocity in g-direction [m s ‘1 

velocity in an azimuthal direction ut, translational velocity of bubble [m s-‘1 

[m 3+kS-‘l u internal energy of vapour in bubble 

c, specific heat of vapour at constant volume 

[Jkg-‘K-‘1 
v tJW’1 

volume of vapour bubble [m’] 
d initial value of mutual distance between W work done by vapour pressure on the 

fluid elements in thermal boundary surrounding liquid [J] 
layer around bubble, Ar,(O) [m] X position vector in rectangular coordinates 

E amount of heat applying to vaporization [ml. 
at the bubble boundary [J] 

F, N-dimensional matrix equation, cf. Greek symbols 
equation (28) 6 incremental quantity 

9 gravitational acceleration [m s -‘I A difference 

k liquid thermal conductivity [w m ’ K ‘1 9 azimuthal angle in spherical coordinates 

k, vapour thermal conductivity [Wm-’ K-‘1 p number of successive time steps 

K,, K,, K3 characteristics P liquid density [kgm-‘1 

1 latent heat of vaporization [J kgg’] P” saturated vapour density [kgm-‘1 

m number of sublayers in the liquid layer fJ surface tension coefficient [kg s-‘1. 

around bubble 
n unit vector normal to bubble surface Other symbols 

N number of collocation points V nabla differential operator [mm’] 

P liquid pressure [Pa] V2 Laplacian differential operator [me2]. 

P” vapour pressure [Pa] 
Ap pressure difference, p” -pm [Pal Subscripts 

Pk Legendre polynomial of order zero and i integer number denoting collocation point 

degree k characterized by R{9i(t)} = R,(t) 

Q amount of heat supplied to the bubble [J] j integer number denoting position of fluid 

r radial coordinate in spherical coordinate element characterized by r,(t) 

system [m] k integer number in series expansion for 

R bubble radius, coordinate of bubble wall liquid velocity 

[ml 1 integer number denoting characteristic 

R*, R** principal radii of curvature of a point characterized by R { 9,(t)} = R,(t) 
given point at bubble boundary [ml V vapour 

R, specific gas constant [J kg-’ Km’] cc far away from the bubble. 

Re, equivalent bubble radius, (3 V/47~)“~ [ml 

t time elapsed after start of bubble Superscript 

implosion [s] first differentiation with respect to time 

At time step size at numerical integration [s] [SC’]. 

ditions are given expanded in spherical coordinates 
assuming rotational symmetry, see Fig. 1. A more 
extensive description of the mathematical treatment 
is given in ref. [l]. Both the vapour pressure and 
temperature depend on the rate of heat and mech- 
anical energy supplied to the bubble (Section 4.2). 

The following assumptions are made : 

The liquid pressure at the bubble boundary follows 
from the Laplace equation : 

(i) Pressure and temperature of the vapour are uni- 
form. 

(ii) Thermodynamic equilibrium exist at the bubble 
boundary, i.e. the vapour temperature equals the 
liquid temperature : T = TV at r = R. 

which accounts for the discontinuity in the normal 
stress at the bubble boundary. Conservation of 
total mass at the moving liquid-vapour interface is 
expressed by : 

p(u. n)-p”(u.n), = (p-p”)x.n. (5) 
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Direction of tronslat ion 

FIG. 1, Bubble with spherical coordinates r, u and R. 

Equation (5) reduces to : 

(u.n) = k.n (6) 

as pV << p, i.e. for operation far below the critical point, 
and if the contribution of the phase transition to the 
displacement rate of the bubble boundary is neglected. 
In view of this, only the equations of motion for the 
liquid are taken into account. 

3. METHOD OF SOLUTION 

The bubble shape is described using a combination 
of the methods of (global, orthogonal) collocation 
and of characteristics. The collocation method has 
been applied by Zijl et al. [24, 61 and by Joosten et 
al. [5]. Sluijter et al. [I] applied also the method of 
characteristics to a translating gas bubble. 

3.1. The collocation method 
The solution of the continuity equation (1) for 

rotational symmetry without singularities in 3 = 0 
and I + cc is given by the following expansion in 
Legendre polynomials : 

dy, 3, t, = f a,(t) ; 
kf2 

0 P, (cos 3) (7) 
k=O 

k+2 
P, (cos 3). (8) 

This solution follows from the solution for the velocity 
potential in an irrotational, incompressible and in- 
viscid liquid flow. 

In practice, series (7) and (8) are truncated after 
N terms. Then the one-dimensional bubble boundary 
is discretized into N so-called collocation points, each 
of them representing a fixed (not changing in time) 
value of 3: the collocation angles 3, i = U(l)N- 1. 
The coefficients ak(t) and bk(t) are chosen in such a 
way that at these collocation points the solution 
of series (7) and (8) satisfies equations (1) and 
(2). The values of cosQi are chosen as the zeros of a 
Legendre polynomial, i.e. the convergence to the 
exact solution for N -+ cc is guaranteed [7]. 

FIG. 2. Two collocation points (N= 2) with radius 
Ri(t) = R(9,, t), i = 0,l and three characteristic points 
R,(t) = R{&(t)}, 9,= ,(t) = 3,=2(r) = 3,=,(t), showing a three- 
valued solution of the bubble radius. K,, K, and K, are 

characteristics. 

3.2. The method of characteristics 

The bubble radius R,(t) = R(3, t) can also be given 
by a series expansion which is similar to equations (7) 
and (8). In that case, a solution of the bubble radius 
has to be single-valued. However, the method of 
characteristics allows a multivalued solution for the 
bubble radius R,(t) = R(9, t) at a given angle 3i and 
a fixed time, see Fig. 2. 

It is of essential importance that, with the latter 
method, families of propagation paths of elementary 
particles are followed adjacent to the moving bubble 
boundary. In this way, characteristic points are 
defined which are characterized by R,(t) = R{3,(t)}, 

i.e. the characteristic angles 3,(t) vary in time, contrary 
to the fixed collocation angles. 

The equations for the characteristics are [I] : 

d3 1 
z=jp 

dR 

dt = 4 (10) 

4. THE ENERGY EQUATION 

If hit by a pressure step, Ap > 0, the bubble 
implodes. During the rapid initial implosion, the 
vapour behaves as a compressible gas and the com- 
pression is adiabatic ; both vapour pressure and tem- 
perature increase. Immediately afterwards, conden- 
sation occurs at the bubble boundary-due to 
vapour supersaturation-and a thermal boundary 
layer develops around the bubble. The heat of con- 
densation is removed by conduction in both liquid 
and vapour adjacent to the bubble boundary (i.e. 
during advanced implosion, the vapour temperature 
increases gradually from TV = TV(O) to TV > T,). 
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The thickness of the thermal boundary layer in 
the liquid increases, and the implosion rate is slowed 
down ; consequently less heat of condensation is lib- 
erated. As a result the vapour temperature decreases. 
Continuation of this process causes oscillations in 
the decreasing rate of the vapour temperature. The 

theoretical approach of vapour bubble implosion 
should involve the hydrodynamic as well as the ther- 
mal effect. The latter effect can be split up into that in 
the liquid and that in the vapour. 

4.1. Liquid 

It is now assumed that the liquid around the bubble 
is composed by moving fluid elements, each with its 
own temperature. Consequently, the energy equation 
has been used as the substantial derivative of the tem- 
perature : 

dT 
~ = aV2T, 
dt 

(11) 

Actually, the shape of the bubble is not spherical. For 
simplicity it is assumed that the heat transfer process 
near the liquid-vapour interface is similar to the case 
of the equivalent spherical bubble. Consequently, 
equations (7) and (8) now reduce to : 

u,q = 0 (12) 

(13) 

The liquid adjacent to the bubble boundary is com- 

posed of a finite number (m > 4) of successive sub- 
layers, each of them with its own linear temperature 
gradient, see Fig. 3. The boundaries of the sublayers 
represent the positions of fluid elements with radii 
r,(t) > R,,(t) and temperatures T,(t) to match, Conse- 
quently, the heat diffusion equation for the liquid (11) 
written in rotationally symmetric spherical coor- 
dinates becomes : 

(dd:),=a($+zg), (14) 

where 

(15) 

and 

v/+,-T,) 
A';+, -~- A5 

Ar 
1’ 

with 

j= l(l)m-1, m > 4 (16) 

Ar, =r,+,-r,, j= l(l)m. 

The boundary conditions of equation (14) are : 

T,=, = T{KJt)), T/am-, = T, (17) 

and the initial conditions : 

Ar,(O) = d, T,(O) = T,. (18) 

According to the second condition of (17) the thermal 
boundary layer of the bubble consists of m-2 sub- 
layers. The outermost two layers in the bulk liquid 
are needed for the calculations of the second deriva- 
tive of the temperature at r,,- 2 and r,_ ,, cf. equa- 
tion (16). The amount of heat supplied to the bubble, 

during a small time interval, is given by : 

T,-T, 
SQ = 4nkR,6 F6t 

I 
(19) 

where ( T2 - T,)/Ar , is the liquid temperature gradient 
at the bubble boundary. 

4.2. Vapour 

The total amount of energy transmitted to the 
vapour in a small time interval is composed of 
both the thermal energy SQ and the mechanical 
work done by the vapour pressure on the surround- 
ing liquid : 

dW=mp &R=dR 
fit, ” eq -l 

(20) 

where the vapour pressure pv is assumed to be homo- 

geneous. The energy balance for this liquid-vapour 
system, i.e. for an open system with phase transition, 

reads : 

SQ = 6U+6W+SE (21) 

where SQ and 6 W are given by equations (19) and 
(20), respectively. In equation (21) is the heat devel- 
opment at the bubble boundary due to phase tran- 
sition taken into account by : 

6E = 16( Vpv) N I( Vhp, +pv6 V). (22) 

In general, and in particular at inertia-controlled 
bubble implosion, T, # T,= , However, in view of the 
high condensation rate occurring at a free surface, 
it is assumed that thermodynamic equilibrium exists 
at the liquid-vapour interface and that T, = T,= ,. 

Also the vapour temperature is assumed to be uni- 
form as a, >> a. The vapour will be treated as an 
ideal gas resulting in the equation of state for the 
energy : 

6U = pvVc,GTv 

and for the vapour pressure : 

(23) 

pv = P,R T B v. (24) 

According to equation (24) an expression for a small 
change in the vapour density, pv = p&, T), during a 
small time interval 6t becomes : 

6p, = & - 
8 v 

j&p 
The relationship between pressure and temperature of 
the vapour is given by the thermodynamic tables but 



Translating vapour bubble under the influence of a pressure step 1895 

t=2at 

FIG. 3. The evolving of the temperature distribution in the 
thermal boundary layer around an imploding bubble for 

rn = 5 sublayers. 

as an approximation of equation (25) the linearized 
Clapeyron’s law is used : 

Substituting equations (23), (25) and (26) into equa- 
tion (21) results in an expression for the increase of 
the vapour temperature during a small time interval 
6t: 

PY VC” t 
> 1 +- 

R,T, . 
(27) 

Both the vapour pressure and density are determined 
by the vapour temperature, which, in turn, has been 
determined by the heat flow rate due to conduction in 
a thin adjacent liquid layer at the bubble boundary 
where condensation or evaporation may occur. 

Essentially, the condensation heat rate is deter- 
mined by & and, therefore, is principally governed 
by liquid inertia while the conduction heat rate is 
determined by the structure of the thermal boundary 
layer. This structure depends upon the initial region, 
mAr,(O) = md, around the bubble. Consequently, the 
choice of the values for m and d influences (theor- 

etically) the implosion behaviour, in addition to the 
pressure step Ap(O), see Section 6.3. 

Without change of phase at the bubble boundary 
one can take I = 0 and equation (27) reduces to 
equation (23). 

5. NUMERICAL ANALYSIS 

The series of equations (7) and (8) are truncated, 
see Section 3.1. In that way the following matrix 
equations are obtained : 

Initially, both the temperature distribution and the 
flow field in the liquid around the bubble are assumed 
to be known. 

A summary of the numerical procedure which has 
been used, follows here. 

(9 

(ii) 

(iii) 

(iv) 

(v) 

Starting at t = 0, the coefficients aJO) and b,(O) 
are determined by means of equations (28) which 
are the solutions of equation (1). The initial 
collocation radii are known from the bubble 
shape. Now, the liquid velocities at the charac- 
teristic points, R,(O), are calculated from equa- 
tions (9) and (10) where 9!(O) < Si(0) < 9,+,(O) 
and I= l(l)N+l. 
After a small time step, At, the new characteristic 
angles and radii are determined by numerical 
integration of equations (9) and (10). Next, the 
new collocation radii are determined using an 
interpolation procedure of the characteristics [l]. 
At t = 0, both aFi/& and aFJi?t are calculated 
from equations (28) and (2), respectively, which 
are needed to calculate the values of the liquid 
velocities on the collocation angles at t = At 

by numerical integration of dFJdt = aF,/dt+ 

(aFJar)u,, r = R,(t). 

At I = At, the temperature field of the liquid is 
determined by integration of equations (14t( 16). 
The vapour temperature has been calculated 
using equation (27) with 6t = At. Subsequently, 
the vapour pressure is determined by using the 
thermodynamic tables for equilibrium data. 
The new positions of the fluid elements are deter- 
mined by equations (12) and (13). 

Next, the procedure is repeated for each timestep 
consecutively. The second boundary condition of (17) 
degenerates into T,,,, , @At)= T, for p<m-3, 
whereas the original condition is relevant for 
p > m - 3. A single Euler method is used for numerical 
integration. The calculations have been executed on 
a Burroughs B7700 computer of the Eindhoven Uni- 
versity of Technology. 
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6. EXPERIMENTAL INVESTIGATIONS 

6.1. Experimental set-up 

As shown in Fig. 4, a stainless-steel vessel is 
used in the experiments, which contains both a sub- 
atmospheric liquid section-filled with demineralized 
water-and a high pressure section-pressurized with 
nitrogen gas. The sections are separated by a O.OS- 
mm-thick Mylar sheet and a condenser. The inner 
dimensions of the liquid section are 115 x 160 x 335 
mm (height). This section contains two sets of 
opposite glass windows to allow high speed motion 

pictures to be taken with a rotating-prism camera, 
operating at 4000 f.p.s. Infra-red light, which the 
quartz windows transmit, is used for liquid heating. 

The liquid is preheated to the boiling temperature 
using a bulk heater. The liquid temperature is then 
kept constant by means of three infra-red heat sources 
providing a uniform temperature distribution in the 

liquid. The static pressure is controlled by a Cartesian 
manostat. A dynamic pressure transducer is mounted 
in the bottom plate of the vessel. The observed bubbles 
are generated at a small thin Ni-Cr wire which is 
heated by applying an electric current pulse. At the 
top of the vessel an electromagnetic knife is mounted 
for the purpose of cutting the Mylar sheet. 

6.2. Experimental method 

The following actions are initiated in chronological 
order using (adjustable) time delays. 

Shortly after the camera is started the NiXr wire 
is heated at the instant at which the desired motion 
picture rate is reached. As the generated bubble 
departs from the wire, the Mylar sheet is cut by forcing 
the electromagnet with an electric current pulse. This 
pulse is recorded both on the motion picture by a 
light emitting diode, mounted appropriately inside the 
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FIG. 4. Diagram of experimental apparatus. 
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camera, and by a transient recorder for the purpose 
of synchronizing the recorded data. 

Due to the initial high pressure in the pressure 
section, a pressure wave passes through the low press- 
ure section, where the ascending-nearly spherical- 
vapour bubble implodes due to the sudden increase 
on liquid pressure. This increase implies an instant 
liquid subcooling. During the entire bubble lifetime, 
the signal of the pressure transducer is recorded-after 
amplification-on the transient recorder. Figures 5 
and 6 show the experimental pressure response, p,(t), 
of the pressure transducer up to complete implosion of 
those bubbles which are shown in Figs. 7a and 7b, 
respectively. The films are analysed frame-by-frame 
using a motion analyser to obtain quantitative bubble 
implosion data. 

6.3. Experimental results 
Figures 7a and 7b show photographs of two 

imploding bubbles-at different initial conditions- 
taken from a high speed motion picture. At t = 0, 
the bubble is hit by a pressure step, Ap(t) > 0, and 
the implosion starts. The accompanying pressure 
response is represented by the curve drawn in Figs. 5 
and 6, respectively. This response deviates from the 
step function because of both the finite cutting time 
of the Mylar sheet and the reflection of the pressure 
wave at the free liquid surface. The dashed curve in 
Figs. 5 and 6 represents the value of the approximating 
pressure response, which is used in the calculations. 
At the time t = 0, the bubble is translated over a 
distance of 0.1 m and the bubble deviates from the 
original spherical shape as a result of buoyancy. Dur- 
ing the implosion (Fig. 7a), the bubble shape of the 
relatively small bubble changes, but fragmentation 
does not occur. This is contradictory to the interesting 
behaviour of a larger bubble (Fig. 7b), which frag- 
ments, i.e. a small bubble departs at the rear of the 
original one. 

Figures 8a and 8b show the results of the numeri- 
cally calculated profile of the bubbles represented in 

0.6 r 

R,, (O)= 1.86 mm 

Ii I I I I I 
0 20 40 60 60 100 

7 t tms) 
FIG. 5. Pressure response, measured by the pressure trans- 

ducer for the bubble of Fig. 7a. 

II, I l l 1 

0 40 60 60 100 
6 

t (ms) 

FIG. 6. Pressure response, measured by the pressure trans- 
ducer for the bubble of Fig. 7b. 

Figs. 7a and 7b, respectively. The origin of the co- 
ordinate system has been fixed at the translating 
bubble centre. In the figures, the origins coincide for 
the different implosion stages. Because of rotational 
symmetry the bubble shape at various instants has 
been drawn for fixed values of 9 in the interval [0, rc]. 
The radially directed drawn curves are characteris- 
tics, the dashed curves are the collocation angles. 

The bubble with R,,(O) = 1.86 mm shown in Fig. 
8a does not fragment within the initial 6 ms, i.e. the 
bubble is stable. The bubble with R,,(O) = 3.06 mm, 
shown in Fig. 8b, fragments at the axis of rotational 
symmetry as a toroidal bubble for t > 1.52 ms. The 
latter bubble is unstable, directly after the initial 
implosion stage, although both bubbles have been hit 
by a nearly equal pressure step. This tendency is in 
agreement with the experimental results shown in 
Figs. 7a and 7b. 

Obviously, both the value of m and the initial value 
of Ar,(O) = d determine the temperature distribution 
in the thermal boundary layer around the imploding 
bubble ; as a result the implosion rate will be affected, 
see Section 4.1. Hence, the computations can be fitted 
to the measured data by choosing the initial tem- 
perature field suitable, i.e. by taking approptiate 
values of m and d. 

Figure 9 shows both the experimental data and the 
computational results for R,,(t) of the bubble shown 
in Figs. 7a and 8a, respectively. A reasonable fitting 
of both curves has been achieved for m = 5 and 
d = 5 x 10e6 m; i.e. the initial thickness of the thermal 
boundary layer amounts to 25 x 10m6 m. 

7. CONCLUSIONS 

The experimental results show that fragmenta- 
tion of an imploding vapour bubble occurs under 
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FIG. 7a. Vapour bubble in water, hit by a pressure step Ap(O) = 0.27 bar (cf. Fig. 5). T(0) = 354.3 K, 
u,,(O) = 0.23 m s- ‘. 



Translating vapour bubble under the influence of a pressure step 1899 



1900 W. M. SLUUTER ef al. 

Axis of symmetry 

Direction of translation 

----me , i=O 
l=I ,I 

Axis of symmetry 

E 

0 

c 

142 

I .52 

Direction of translation 

,‘i-0 

‘4 

FIG. 8a. Numerically calculated profile of the free translating FIG. 8b. Numerically calculated profile of the free translating 
vapour bubble of Fig. 7a, imploding in a pressure field (cf. vapour bubble of Fig. 7b, imploding in a pressure field (cf. 

Fig. 5) at various instants. N = 5, g = 9.81 m sm2. Fig. 6) at various instants. N = 5, g = 9.81 m ss*. 

certain conditions. The stability of the bubble shape 
during implosion depends on the initial conditions, 
for example, the initial bubble shape and the initial 
equivalent bubble radius (at equal translational velo- 
cities). 

In addition to the continuity and momentum equa- 
tions for the liquid (which are sufficient to describe 
gas bubble implosion), the energy equation for both 

1 Rep (O)= ymm, , 

0 2 4 6 8 

t (ms) 

FIG. 9. The experimental and numerically calculated equi- 
valent bubble radius for the bubble of Fig. 7a. 

the liquid and the vapour must be taken into account 
in order to describe vapour bubble implosion 
correctly, see Sections 4.1 and 4.2. Numerical analysis 
is shown to be able to describe the fragmentation and 

vapour bubbles, see also ref. [l]. 

Acknowledgemenf-The authors are indebted very much to 
J. G. M. Niessen for his aid in setting up the electronics of 
the experiments. 

1. 

2. 

3. 

4. 

5. 

REFERENCES 

W. M. Sluijter, S. J. D. van Stralen and W. Zijl, The 
method of characteristics applied to numerical solutions 
of gas bubble implosion and fragmentation, Inc. J. Heat 
Mass Transfer 25, 1103-l 111 (1982). 
W. Zijl, The hydrodynamics of vapour and gas bubbles 
by numerical approximations methods. In Boiling 
Phenomena (Edited by S. J. D. van Stralen and R. Cole). 
Hemisphere, Washington D.C. (1979). 
W. Zijl, Global collocation approximations of the flow 
and temperature fields around a gas and vapour bubble, 
Int. J. Heat Mass Transfer 22,487498 (1977). 
W. Zijl, F. J. M. Ramakers and S. J. D. van Stralen, 
Global numerical solutions of growth and departure of a 
vapour bubble at a horizontal superheated wall in a pure 
liquid and a binary mixture, ht. J. Heat Mass Transfer 
22,401420 (1979). 
J. G. H. Joosten, W. Zijl and S. J. D. van Stralen, Growth 
of a vapour bubble in combined gravitational and non- 
uniform temperature fields, Int. J. Heat Mass Transfer 
21, 15-23 (1978). 



Translating vapour bubble under the influence of a pressure step 

6. W. Zijl, Departure of a bubble growing on a horizontal 7. L. Fox and I. B. Parker, 
wall. Ph.D. thesis, Eindhoven University of Technology, Numerical Analysis. Oxford 
The Netherlands (1978). (1968). 

1901 

Chebychev Polynomials in 
University Press, London 

COMPORTEMENT D’UNE BULLE DE VAPEUR EN TRANSLATION SOUS 
L’INFLUENCE D’UN SAUT DE PRESSION. SOLUTIONS NUMERIOUES 

. DE L’IMPLOSION ET DE LA FRAGMENTATION 

RCum&L’implosion d’une bulle libre de vapeur, sph&ique & l’origine sous l’effet d’un saut de pression 
est d&rite par une solution numirrique des Equations descriptives. Le traitement est base sur l’application 
d’une combinaison des mtthodes mathkmatiques de collocation et des caracttristiques. Le comportement 
d’une bulle de vapeur est une gin&ralisation du comportement dii B l’effet de la transition de phase, g la 
paroi de la bulle. Contrairement g une bulle de gaz, une bulle de vapeur diminue compl&tement pendant 
l’implosion. Les prCvisions thkoriques incluent la forme de la bulle et la fragmentation, en accord qualitatif 

avec de nouveaux risultats expCrimentaux. 

DAS VERHALTEN EINER SICH BEWEGENDEN DAMPFBLASE UNTER DEM EINFLUSS 
EINER SPRUNGHAFTEN DRUCKANDERUNG: NUMERISCHE Lt)SUNGEN FtiR 

DIE IMPLOSION UND FRAGMENTATION 

Zusammenfassung-Mit Hilfe der numerischen Lasung der Grundgleichungen wird die Implosion einer 
sich bewegenden, urspriinglich kugelfiirmigen, freien Dampfhlase unter dem EinfluD einer sprunghaften 
Druckanderung beschrieben. Die Behandlung beruht auf einer Kombination des mathematischen Kol- 
lokations- und des Charakteristikenverfahrens. Das Verhalten einer Dampfblase ist die Verallgemeinerung 
des Verhaltens einer Gasblase unter Einbeziehung des Effekts des Phaseniibergangs an der Phasen- 
grentilche. Im Gegensatz zu einer Gasblase verschwindet die Dampfblase vollstlndig wahrend der 
Implosion. Die theoretischen Berechnungen umfassen unter anderem die Blasengestalt und die Frag- 

mentation, die mit neuen experimentellen Ergebnissen gut iibereinstimmen. 

0 I-IOBEAEHMki I-IEPEMEwAKXQEl-OC2 l-IAPOBOl-0 l-IY3bIPbKA l-IOA AERCTBMEM 
CKA’JKA AABIIEHMII. WiCJIEHHbIE PEIIIEHHR 3AHA’I 0 B3PbIBE I4 flPO6JIEHMM 

hmuTamm--Ha ocHosaHuH ypasHeHafi nepeHoca qucneHH0 pelueua 3anaua 0 n3pbme neperdemalome- 
rOCs, 83Ha'iUlbHO C~pHWCKOrO,CBO6OAHOrO lIj'3btpbKa llapa IIOA AeiiCTBHeM CKtlYKa AaEneHWl. hCC- 

MOTpHHe OCHOBaHO Ha lIpHMeHeHH54 KOM6HHaLWi MeTOAOB KOJlJlOKaUHH H XapaKTe,,HCTHK.nOBeAeHUe 

I-IapOBOrO tly3bIpbKa IlpCACTaBnneT co6oii o6o6ueHme AHHaMHKH lTy3bIpblCa Ta3a C y'leT0P.f 3@@KTa 

@a3osoro nepexona Ha creHKe nysbtpbxa. B 0TnnqHe OT nysbipbra ra3a naposoii nysblper s npouecce 
sHyTlXHHer0 B3pblBa yMeHbllIaeTCX TeOpeTHWKHe paC’ieTbl @OpMbl lly3bIpbKa W ApO6JIeHHK 

HaXOARTCK BKaSeCTBeHHOMCOOTBeTCTBHHC3KCnePHMeHTanbHblMHAPHH~MH. 


